extern

extern 키워드를 사용하면 플랫폼 간 상호 운용성, 성능 최적화, 코드의 안전성과 에러 처리를 모색할 수 있다.

 

플랫폼 간 상호 운용성

C# 언어를 사용하는 프로젝트에서 이외의 언어로 작성된 라이브러리 함수를 호출하는 경우는 아주 흔하게 발생하는 상황이다. 예를 들어서 C#에서 Windows API를 호출하려면 DllImport 속성을 사용해서 C# 코드에서 네이티브 코드 함수를 선언해야 한다. 이를 통해 C# 프로그램에서 운영 체제 수준의 다양한 기능을 직접적으로 사용할 수 있다.

 

Windows API 중 몇 가지 간단한 함수를 사용해 본다.

namespace Test
{
    using System;
    using System.Text;
    using System.Runtime.InteropServices;

    internal class Program
    {
        [StructLayout(LayoutKind.Sequential)]
        public struct SYSTEMTIME
        {
            public ushort Year;
            public ushort Month;
            public ushort DayOfWeek;
            public ushort Day;
            public ushort Hour;
            public ushort Minute;
            public ushort Second;
            public ushort Milliseconds;
        }

        [DllImport("Kernel32.dll")]
        public static extern bool SetConsoleTitle(string title);
        

        [DllImport("Kernel32.dll", CharSet = CharSet.Auto)]
        public static extern uint GetConsoleTitle(StringBuilder buffer, uint size);

        [DllImport("Kernel32.dll")]
        public static extern void GetSystemTime(out SYSTEMTIME st);

        static void Main(string[] args)
        {
            SetConsoleTitle("Bak's Console");
            Console.WriteLine("Hello, World!");

            StringBuilder buffer = new StringBuilder(256); // Define buffer size according to your need
            GetConsoleTitle(buffer, (uint)buffer.Capacity);
            Console.WriteLine("Console Title: " + buffer.ToString());

            SYSTEMTIME st;
            GetSystemTime(out st);
            Console.WriteLine("Current System Time: {0}-{1}-{2} {3}:{4}:{5}.{6}",
                st.Year, st.Month, st.Day, st.Hour, st.Minute, st.Second, st.Milliseconds);

            Console.ReadLine();
        }
    }
}

 

실행 결과

C# - extern kernel32.dll

 

외부 함수 SetConsoleTitle을 사용해서 실행되는 콘솔의 타이틀을 변경하고 GetConsoleTitle을 사용해서 변경한 콘솔의 타이틀을 가지고 와서 콘솔에 찍어본다. 그리고 GetSystemTime을 사용해서 현재 실행 중인 장치의 시간을 가지고 온다.

 

코드를 보면 알 수 있듯이 필요한 기능을 사용하기 위해서는 어트리뷰트를 선언할 때 추가로 필요한 값들이나 사용하고자 하는 함수의 반환값, 필요한 파라미터 등에 대한 정보들이 필요하다.

 

이러한 정보들은 마이크로소프트 공식 문서나 또는 이를 주제로 하는 커뮤니티에서 확인할 수 있고 이외 라이브러리들도 제공하는 곳에서 API 문서를 확인할 수 있다.

 

성능 최적화

C# 코드 내에서 수학 계산이나 이미지 처리와 같은 고성능의 연산을 요구하는 네이티브 라이브러리 함수를 호출하는 방법이 있다. 이러한 방식은 매니지드 코드(Managed Code)에 비해 실행 속도가 빠른 네이티브 코드의 이점을 활용할 수 있게 해 준다.

 

네이티브 코드를 사용하는 것이 언제나 성능적으로 이점이 있다고 할 수는 없으므로 해당 목적을 위해서 외부 라이브러리를 사용한다고 했을 때에는 .Net 환경에서 이미 최적화된 상태인 C# 라이브러리의 성능과 비교해서 네이티브 코드를 사용했을 때에 성능적인 이점이 있을 때 사용하는 것이 좋다.

 

 

728x90
반응형

new

new 키워드의 사용을 최소화하여 객체 생성의 통제를 개선하고 코드의 유연성과 재사용성을 높여 의존성 관리를 용이하게 할 수 있다. 이를 통해서 메모리 사용을 최적화하고 객체의 생명주기를 효과적으로 관리할 수 있다.

 

디자인 패턴(Design Pattern)

주로 사용되는 방식들은 패턴으로 정형화된 구조를 만들 수 있다. 

자주 그리고 반복적으로 사용되는 코드의 디자인을 정형화된 패턴으로 만들 수 있는데 이를 디자인 패턴이라고 한다.

 

디자인 패턴은 다양한 종류들이 존재하는데 이번에는 그중 객체의 생성과 할당과 관련된 패턴들 중 대표적인 몇 가지만 살펴본다.

 

싱글턴 패턴(Singleton Pattern)

싱글턴 패턴은 클래스의 인스턴스가 하나만 존재하도록 보장하는 패턴이다.

이 패턴은 객체를 전역적으로 접근할 수 있게 하여 리소스에 대한 중복 접근을 방지하고 메모리 사용을 효율적으로 관리할 수 있도록 한다. 시스템 전체에 걸쳐 일관된 상태를 유지할 수 있으며 객체의 생성과 생명주기를 통제할 수 있다.

 

public class Singleton
{
    private static Singleton instance;
    private Singleton() {}
    
    public static Singleton GetInstance()
    {
        if (instance == null)
        {
            instance = new Singleton();
        }
        return instance;
    }
}

 

생성자를 private으로 선언하여 클래스 외부에서는 새 객체를 생성할 수 없도록 하며 GetInstance()를 통해서 유일하게 존재하는 클래스의 인스턴스에 접근할 수 있도록 한다.

 

팩토리 메서드 패턴(Factory Method Pattern)

객체 생성을 처리하는 인터페이스를 제공하면서 서브 클래스가 생성할 객체의 클래스를 지정할 수 있게 한다.

이 패턴을 통해서 객체 생성을 추상화할 수 있으며 시스템의 확장성과 유연성을 향상할 수 있다.

 

팩토리 패턴의 방법은 다음과 같다.

 

1. 생성할 객체들이 공통적으로 구현할 인터페이스를 정의한다. 

2. 인터페이스를 구현하는 클래스들을 생성한다. 각 클래스에서는 인터페이스의 메서드를 구체적으로 구현한다.

3. 객체 생성을 담당할 메서드를 포함하는 인터페이스를 정의한다. 이 메서드는 인터페이스 타입의 객체를 반환한다.

4. 생성자 인터페이스를 구현하는 클래스를 생성하고 팩토리 메서드를 오버라이드하여 인스턴스를 생성하고 반환한다.

5. 외부에서는 팩토리 메서드를 통해 객체를 생성하여 의존성 없이 동작할 수 있게 된다.

 

예시로 여러 종류의 몬스터를 만드는 팩토리 패턴을 활용하여 작성해 본다.

 

// 몬스터 인터페이스 정의
public interface IMonster
{
    void Attack();
}

// 구체적인 몬스터 클래스
public class Zombie : IMonster
{
    public void Attack()
    {
        Console.WriteLine("Zombie attacks!");
    }
}

public class Vampire : IMonster
{
    public void Attack()
    {
        Console.WriteLine("Vampire attacks!");
    }
}

// 몬스터 생성을 위한 팩토리 클래스
public abstract class MonsterFactory
{
    public abstract IMonster CreateMonster();
}

public class ZombieFactory : MonsterFactory
{
    public override IMonster CreateMonster()
    {
        return new Zombie();
    }
}

public class VampireFactory : MonsterFactory
{
    public override IMonster CreateMonster()
    {
        return new Vampire();
    }
}

class Program
{
    static void Main(string[] args)
    {
        MonsterFactory factory = new ZombieFactory();
        IMonster monster = factory.CreateMonster();
        monster.Attack();

        factory = new VampireFactory();
        monster = factory.CreateMonster();
        monster.Attack();
    }
}

 

 

특히 다양한 객체가 동일한 인터페이스를 공유하거나 시스템 구성 요소 간의 결합도를 낮추기 원할 때 유용하며 객체의 생성과 클래스의 구현을 분리함으로써 모듈화 된 코드 구조를 가능하게 한다.

 

빌더 패턴 (Builder Pattern)

빌더 패턴은 복잡한 객체의 생성과정을 단계별로 나누어 구축하는 디자인 패턴으로 객체의 생성 과정과 표현 방법을 분리하여 동일한 생성 절차에서 다양한 표현 결과를 얻을 수 있도록 한다. 주로 복잡한 객체를 조립해야 할 때 사용되며 각 부분의 조립 순서를 외부에서 지정할 수 있다.

 

// 캐릭터의 인터페이스 정의
public interface ICharacter
{
    void EquipWeapon(string weapon);
    void EquipArmor(string armor);
    void AddAbility(string ability);
}

// 캐릭터 빌더 인터페이스
public interface ICharacterBuilder
{
    ICharacterBuilder BuildWeapon(string weapon);
    ICharacterBuilder BuildArmor(string armor);
    ICharacterBuilder BuildAbility(string ability);
    Character Build();
}

// 구체적인 캐릭터 빌더
public class HeroBuilder : ICharacterBuilder
{
    private Character _character = new Character();

    public ICharacterBuilder BuildWeapon(string weapon)
    {
        _character.EquipWeapon(weapon);
        return this;
    }

    public ICharacterBuilder BuildArmor(string armor)
    {
        _character.EquipArmor(armor);
        return this;
    }

    public ICharacterBuilder BuildAbility(string ability)
    {
        _character.AddAbility(ability);
        return this;
    }

    public Character Build()
    {
        return _character;
    }
}

// 사용 예
public class Game
{
    public void CreateHero()
    {
        HeroBuilder builder = new HeroBuilder();
        Character hero = builder.BuildWeapon("Sword")
                                 .BuildArmor("Shield")
                                 .BuildAbility("Invisibility")
                                 .Build();
    }
}

 

 

캐릭터가 가지는 공통적인 기능을 인터페이스로 구현한 다음 구체적인 캐릭터 클래스에서 원하는 옵션으로 조립할 수 있도록 단계를 구분한다.

728x90
반응형

new

메모리 할당

new 키워드를 사용하면 CLR은 관리되는 힙에 객체를 위한 메모리를 할당한다. 

할당된 메모리는 해당 객체에 대한 모든 참조가 없어질 때까지 메모리에 존재하고 더 이상 참조되지 않을 때 GC에 의해 관리된다.

public class MyClass
{
    public int Number { get; set; }
}

public class Program
{
    public static void Main()
    {
        MyClass myObject = new MyClass();
        myObject.Number = 1;
        Console.WriteLine(myObject.Number);
    }
}

 

 

생성자

생성자는 객체가 할당될 때 호출되는 생명주기 메서드(Lifecycle Methods)이다.

클래스의 객체를 생성하는 방식을 생각해 보면 new 키워드 뒤에 클래스명의 함수를 쓰는데 이 함수는 클래스에서 따로 작성하지 않았는데도 문제없이 컴파일된다.

 

MyClass myObject = new MyClass();

 

그 이유는 클래스에 별도로 생성자에 대한 작성을 하지 않아도 컴파일 단계에서 자동으로 기본 생성자를 만들어서 사용하기 때문에 컴파일 에러가 발생하지 않게 된다.

 

기본 생성자의 형태는 클래스 명의 메서드로 함수 내부에는 비어있는 형태로 볼 수 있다.

 

public class MyClass
{
    public int Number { get; set; }
    // 기본 생성자 형태
    public Number(){}
}

public class Program
{
    public static void Main()
    {
        MyClass myObject = new MyClass();
        myObject.Number = 1;
        Console.WriteLine(myObject.Number);
    }
}


생성자의 접근제한자를 private 등을 사용해서 클래스의 인스턴스 생성을 제한할 수 있다.

 

생성자는 파라미터를 추가한 형태로 선언이 가능하며 클래스의 인스턴스가 생성될 때 필드나 프로퍼티를 초기화하는 방법으로 사용할 수 있다.

 

public class MyClass
{
    public int Number { get; set; }
    private string _id;
    private string _pw;
    private int _age;
    private bool _isAgree;
    
    // 기본 생성자 형태
    public Number(string id, string pw, int age, bool isAgree)
    {
    	_id = id;
        _pw = pw;
        _age = age;
        _isAgree = isAgree;
    }
}

public class Program
{
    public static void Main()
    {
        MyClass myObject = new MyClass("bak", "****", 19, true);
        // 에러 발생
        MyClass myObject = new MyClass();
    }
}

 

이렇게 하면 인스턴스를 생성과 동시에 필드값을 초기화할 수 있다.

주의할 점은 이렇게 파라미터를 받는 생성자를 작성하게 되면 컴파일러에서는 더 이상 기본 생성자는 만들어 주지 않기 때문에 기본 생성자를 사용하려고 하면 컴파일 에러가 발생하게 되므로 기본 생성자도 사용하기를 원하면 추가로 작성해야 한다. 즉 생성자도 오버로딩이 가능하기 때문에 다양한 매개변수를 받는 생성자의 선언이 가능하다.

 

소멸자

생성자와는 호출 시점에만 차이가 있는 생명주기 메서드이다. (파괴자라고도 한다.)

소멸자는 객체가 소멸되는 시점에 호출되며 C#에서는 더 이상 객체가 참조되는 곳이 없을 때 GC에 의해서 관리되어 소멸될 때 소멸자가 호출된다.

 

따라서 소멸자의 호출 시점이 명확하지 않으므로 소멸자 내부에서 어떠한 기능을 수행시키게 한다면 동작에 대한 기대가 힘들기 때문에 C#에서는 이를 활용하는 경우는 드물다. 

 

public class MyClass
{
    public Number(){}
    // 소멸자 선언
    ~Number(){}
}

 

소멸자는 직접 호출도 불가능하기 때문에 별도의 접근 제한자를 지정할 필요도 없다.

728x90
반응형

+ Recent posts